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second order) [13] were proposed. Versions of LECUSSO
have been proposed, which are formulated in conservationA numerical difference scheme to solve stationary transport equa-

tions with spatially distributed coefficients is presented. The spatial form for uniform mesh size grids [14] and for nonuniform
distribution of the coefficients in the transport equations is taken into mesh sizes [15].
consideration based on a four-region model among three adjacent Those locally exact schemes are characterized by de-
control volumes, in which continuous conditions for solutions are

termining difference coefficients so that the resulting dif-imposed on the boundary between two adjacent regions. The coef-
ference equation will satisfy locally the exact solution of theficients in the difference scheme are determined so that it will be

satisfied exactly by any local solution of the continuous equations convection–diffusion equation with constant coefficients.
with piecewise constant coefficients in each region. The present The difference coefficients depend on local velocities. The
scheme is examined through numerical experiments for one-dimen- locally exact schemes have been extended to transport
sional convection–diffusion equations with spatially distributed co-

equations with absorption [16, 17] and source terms [18,efficients and source term and a two-dimensional cavity flow prob-
19]. In most cases numerical experiments with these locallylem. The present scheme shows good solutions. Q 1997 Academic Press

exact schemes have shown stable and good solutions
[15, 17].

1. INTRODUCTION However, in those locally exact schemes, the coefficients
of the transport equations are assumed to be (local) con-

So far strenuous efforts have been made to develop high- stants between adjacent control volumes. Beyond this the
order numerical schemes for transport equations with the source term is also treated as a constant. Therefore, it is
convection term. The difficulty in devising a high-accuracy preferable to construct a numerical scheme, taking into
scheme exists a conflicting requirements of accuracy on consideration the spatial distributions of the coefficients,
one hand and stability on the other. While the stability inclusive of the absorption and the source term in the
usually requires some kind of diffusive smoothing mecha- transport equations, especially when the coefficients
nism, the accuracy relies precisely on the opposite [1]. vary steeply, such as the neutron transport equation with

Linear high-order schemes [2–6] with constant differ- strong absorption near the control rods in a nuclear
ence coefficients based on polynomial differencing such as reactor.
the QUICK scheme [5] tend to give rise to unphysical In this study, spatial distribution of the coefficients in
oscillations (numerical oscillations), especially in regions transport equations is taken into consideration, based on
of steep gradients. This difficulty has been overcome by a four-region model among three adjacent control volumes
the use of artificial viscosity such as FCT [7] and FRAM in a staggered computational grid with nonuniform mesh
[8] techniques. Furthermore, total variation diminishing sizes, in which the continuous conditions for the locally
flux limiters (TVD) [9] and high-resolution flux limiters [1, exact solution in each region are imposed on the boundary
10] to suppress the local oscillations have been proposed. between two adjacent regions. Thus a new scheme,

Alternatively, the concept of locally exact numerical dif- SDCLENS (spatially distributed coefficients locally exact
ferencing was introduced by Allen and Southwell [11], numerical scheme), is constructed on the basis of the locally
upon which numerical schemes involving three points in a exact solutions consistent with spatially piecewise coeffi-
one-dimensional field were developed [12]. Beyond these, cients of the transport equations among three adjacent
LECUSSO (locally exact consistent upwind schemes of control volumes. The present scheme has been examined

through numerical experiments for both one- and two-
dimensional transport equations.* Corresponding author.
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FIG. 1. Four-region model in a staggered computational grid.

2. MATHEMATICAL FORMULATION in the field of computational fluid dynamics. We approxi-
mate the convection term in Eq. (1) at x 5 xi as

To begin with, we outline our mathematical procedures.
The essence of the method is to choose the coefficients in
the difference scheme so that it will be satisfied exactly by df

dxUi
5

(fi11/2 2 fi21/2)
Dxi

. (2)
any local solution of the continuous equations, that is, a
solution of the continuous equations with piecewise con-
stant coefficients and quadratic source term. The first step, Here fi11/2 and fi21/2 , the transported quantities defined
therefore, is to find a general form for the local solution on the control volume surfaces, are approximated on the
of the continuous equations in terms of a particular solu- basis of upwind differencing by the expressions:
tion plus two solutions of the homogeneous equation. Re-
quiring that the resulting difference scheme be satisfied

fi11/2 5 Ai11/2fi21 1 Bi11/2fi 1 Ci11/2fi11 for Ri11/2 . 0, (3.a)
exactly for these three solutions determines the three coef-
ficients in the difference scheme. Having determined the 5 Ai11/2fi 1 Bi11/2fi11 1 Ci11/2fi12 for Ri11/2 , 0, (3.b)
coefficients in the difference scheme, the transport equa-

fi21/2 5 Ai21/2fi22 1 Bi21/2fi21 1 Ci21/2fi for Ri21/2 . 0, (3.c)tion can then be solved by a straightforward matrix in-
version. 5 Ai21/2fi21 1 Bi21/2fi 1 Ci21/2fi11 for Ri21/2 , 0. (3.d)

2.1. Transport Equations
Hereafter we assume Ri11/2 . 0 and Ri21/2 . 0.

We consider a one-dimensional, stationary state trans- The next step is to determine the difference coefficients
port equation, (Ai11/2 , Bi11/2 , Ci11/2) in Eq. (3). In Ref. [19], we already

derived those coefficients for the transport equation with
constant coefficients R and P and quadratic source Q(x),d2f

dx2 2 R(x)
df

dx
2 P(x)f 1 Q(x) 5 0, (1)

namely based on a one-region model. Here we derive a
locally exact difference formula, taking into consideration

where f is the transported quantity and x denotes the the spatial distribution of the coefficients R and P based
Cartesian space coordinate. R(x), P(x), and Q(x) denote on a four-region model.
the intensity of the convection, absorption, and source In Fig. 1, we refer to Reg. 1 for the region between xi21
normalized by the diffusion parameters such as the kine- and xi21/2 , Reg. 2 for the region between xi21/2 and xi , Reg.
matic viscosity n. In this section, discussions on mathemati- 3 for the region between xi and xi11/2 , and Reg. 4 for the
cal treatments of the spatial distribution of R(x), P(x), and region xi11/2 and xi11 , respectively. Pi21 , Pi , and Pi11 are
Q(x) are focussed. used in Reg. 1, in Regs. (2 and 3), and in Reg. 4, respec-

tively. Hereafter subscript k indicates the region number
2.2. Difference Formula

associated with the control volume i under consideration,
as shown in Fig. 1, and the mixed number such as (i 1 k)Here we consider a staggered-mesh grid with nonuni-

form mesh sizes, in which the transporting velocities are and (i 1 k 1 1/2) indicates the location of the x-coordinate.
Based on this four-region model, we consider the contin-located on the control volume surface and other properties

such as the transported quantity f and the intensity of uous equation with piecewise coefficients R and P and
quadratic source Q(x) in each region k 5 1–4 associatedabsorption P are defined at the control volume center, as

shown in Fig. 1. This staggered-mesh grid is usually used with the control volume i as follows:
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f p
i,k(x) for k 5 3 and 4 is given by replacing Pi1k22 andd2f

dx2 2 Ri21/2
df

dx
2 Pi1k22f 1 Q(x) 5 0 for k 5 1, 2, (4.a) Ri21/2 in the above equations with Pi1k23 and Ri11/2 , respec-

tively. When the values Qi21 , Qi , and Qi11 of Q(x) at x 5
xi21 , xi , and xi11 , respectively, are known in actual calcula-d2f

dx2 2 Ri11/2
df

dx
2 Pi1k23f 1 Q(x) 5 0 for k 5 3, 4. (4.b)

tions, the polynomial Eq. (9) for Q(x) can be obtained by
an interpolation technique in terms of those three values

The general solutions for Eq. (4) are given by (on Reg. k) of Q(x).
In Eq. (6), eight constants Ek,1 and Ek,2 for k 5 1, 2, 3,

fi,k(x) 5 f0
i,k(x) 1 fp

i,k(x) for k 5 1, 2, 3, 4, (5)
and 4 can be reduced to two constants by imposing the
continuous conditions at x 5 xi21/2 , x 5 xi , and x 5

where f0
i,k(x) is the homogeneous solution without the

xi11/2 . At x 5 xi211k/2 for k 5 1, 2, 3,
source term and fp

i,k(x) is the particular solution. f0
i,k(x) is

given by
fi,k 5 fi,k11 , f9i,k 5 f9i,k11 , (10)

f0
i,k(x) 5 Ek,1 exp[gk,1x]

(6) where the superscript 9 denotes the derivative with respect
1 Ek,2 exp[gk,2x] for k 5 1, 2, 3, 4,

to x.
From Eq. (10) we obtain

where Ek,1 and Ek,2 are constants determined by boundary
conditions and gk,1 , and gk,2 are the roots of the following

Ek,1 5 ak,1Ek21,1 1 ak,2Ek21,2 1 ak,3 for k 5 2, 3, 4, (11.a)characteristic equations:
Ek,2 5 bk,1Ek21,1 1 bk,2Ek21,2 1 bk,3 for k 5 2, 3, 4, (11.b)

g2 2 Ri21/2g 2 Pi1k22 5 0 for k 5 1, 2, (7.a)

whereg2 2 Ri11/2g 2 Pi1k23 5 0 for k 5 3, 4. (7.b)

Here we assume gk,1 ? gk,2 without loss of generality. If
ak,1 5

(gk21,1 2 gk,2) exp[gk21,1xi211k/2]
(gk,1 2 gk,2) exp[gk,1xi211k/2]

, (12.a)the roots of Eq. (6) are imaginary numbers, the exponential
functions in Eq. (6) are to be replaced by the trigonometri-
cal functions. The expression of Eq. (6) may generally ak,2 5

(gk21,2 2 gk,2) exp[gk21,2xi211k/2]
(gk,1 2 gk,2) exp[gk,1xi211k/2]

, (12.b)
include such a case of the trigonometric functions. When
the source Q(x) is given as a second-order polynomial by

Q(x) 5 a0 1 a1x 1 a2x2, (8) ak,3 5

hf p
i,k219(xi211k/2) 2 f p

i,k9(xi211k/2)
2gk,2[f

p
i,k21(xi211k/2) 2 f p

i,k(xi211k/2)]j
(gk,1 2 gk,2) exp[gk,1xi211k/2]

, (12.c)

we have

bk,1 5
(gk21,1 2 gk,1) exp[gk21,1xi211k/2]

(gk,2 2 gk,1) exp[gk,2xi211k/2]
, (13.a)

f
p

i,k(x) 5 dk,0 1 dk,1x 1 dk,2x2 1 dk,3x3, (9)

where for k 5 1 and 2 and Pi1k22 ? 0 bk,2 5
(gk21,2 2 gk,1) exp[gk21,2xi211k/2]

(gk,2 2 gk,1) exp[gk,2xi211k/2]
, (13.b)

dk,0 5
a0

Pi1k22
2

Ri21/2(a1Pi1k22 2 2a2Ri21/2

(Pi1k22)3 1
2a2

(Pi1k22)2 ,

bk,3 5

hf p
i,k219(xi211k/2) 2 f p

i,k9(xi211k/2)
2gk,1[f

p
i,k21(xi211k/2) 2 f p

i,k(xi211k/2)]j
(gk,2 2 gk,1) exp[gk,2xi211k/2]

. (13.c)

dk,1 5 2
2a2Ri21/2

(Pi1k22)2 1
a1

Pi1k22
, dk,2 5

a2

Pi1k22
, dk,3 5 0;

In the same manner as Ref. [19], we impose that Eq. (3.a)
satisfy the exact solution Eq. (5) of Eq. (4). Substituting Eq.for k 5 1 and 2 and Pi1k22 5 0
(5) into Eq. (3.a) yields

dk,0 5 arbitrary constant,
E3,1 exp[g3,1xi11/2] 1 E3,2 exp[g3,2xi11/2] 1 f p

i,3(xi11/2)

5 Ai11/2(E1,1 exp[g1,1xi21] 1 E1,2 exp[g1,2xi21] 1 f p
i,1(xi21))

(14)
dk,1 5

a1Ri21/2 1 2a2 1 a0(Ri21/2)2

(Ri21/2)3 ,

1 Bi11/2(E2,1 exp[g2,1xi] 1 E2,2 exp[g2,2xi] 1 f p
i,2(xi))

dk,2 5
a1Ri21/2 1 2a2

(Ri21/2)2 , dk,3 5
a2

3Ri21/2
.

1 Ci11/2(E4,1 exp[g4,1xi11] 1 E4,2 exp[g4,2xi11] 1 f p
i,4(xi11)).
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Expressing Ek,1 , Ek,2 for k 5 2, 3, 4 in Eq. (14) with E1,1 When the coefficients R and P are constant, we have
f p

i,k(x) 5 f p
i,1(x), gk,1 5 g1,1 , gk,2 5 g1,2 for k 5 1 to 4,and E1,2 by using Eq. (11) and rearranging Eq. (14) in

respect to E1,1 and E1,2 , we require that Eq. (14) identically and ak,1 5 bk,2 5 1, ak,2 5 ak,3 5 bk,1 5 bk,3 5 0 for
k 5 1 to 4. Then from Eq. (15), we obtainhold for arbitrary values of E1,1 and E1,2 . From this require-

ment, we obtain the matrix equation (see Appendix)

|
exp[g1xi21] exp[g1xi] exp[g1xi11]

exp[g2xi21] exp[g2xi] exp[g2xi11]

f p
i,1(xi21) f p

i,1(xi) f p
i,1(xi11)

| |
Ai11/2

Bi11/2

Ci11/2
|

(16)

M ? |
Ai11/2

Bi11/2

Ci11/2
| 5 N, (15)

where the matrices M 5 [Mm,n], N 5 [Nm] are defined 5 |
exp[g1xi11/2]

exp[g1xi11/2]

f p
i,1(xi11/2)

|.as follows:

M1,1 5 exp[g1,1xi21],
with g1 5 gk,1 and g2 5 gk,2 for k 5 1 to 4. Equation (16)

M1,2 5 a2,1 exp[g2,1xi] 1 b2,1 exp[g2,2xi], is identical to Eq. (15) in Ref. [19]. From Eq. (15), we
obtain the difference coefficients Ai11/2 , Bi11/2 , and Ci11/2 .M1,3 5 (a4,1a3,1a2,1 1 a4,1a3,2b2,1

The stability analysis for the above scheme using the
1 a4,2b3,1a2,1 1 a4,2b3,2b2,1) exp[g4,1xi11] characteristic polynomial analysis method performed by

the author [20, 21] was carried out for the convection–
1 (b4,1a3,1a2,1 1 b4,1a3,2b2,1 diffusion equation with constant coefficients and absorp-

tion. The results show that the present locally exact scheme,1 b4,2b3,1a2,1 1 b4,2b3,2b2,1) exp[g4,2xi11],
taking into consideration the absorption term, has the non-

M2,1 5 exp[g1,2xi21], oscillation properties, while the locally exact schemes,
without consideration of the absorption term such as theM2,2 5 a2,2 exp[g2,1xi] 1 b2,2 exp[g2,2xi],
LECUSSO scheme, may show oscillatory solutions.

M2,3 5 (a4,1a3,1a2,2 1 a4,1a3,2b2,2

3. NUMERICAL EXPERIMENTS1 a4,2b3,1a2,2 1 a4,2b3,2b2,2) exp[g4,1xi11]

1 (b4,1a3,1a2,2 1 b4,1a3,2b2,2 Here we perform numerical experiments to examine the
present scheme by using one- and two-dimensional

1 b4,2b3,1a2,2 1 b4,2b3,2b2,2) exp[g4,2xi11], problems.
M3,1 5 fp

i,1(xi21),
3.1. One-Dimensional Problem

M3,2 5 a2,3 exp[g2,1xi] 1 b2,3 exp[g2,2xi] 1 fp
i,2(xi),

3.1.1. Computational Conditions
M3,3 5 (a4,1a3,1a2,3 1 a4,1a3,2b2,3 1 a4,2b3,1a2,3

The transport equation for the first experiment is
1 a4,2b3,2b2,3 1 a4,1a3,3 1 a4,2b4,3 1 a4,3) exp[g4,1xi11]

1 (b4,1a3,1a2,3 1 b4,1a3,2b2,3 1 b4,2b3,1a2,3 d2f

dx2 1 tan(x)
df

dx
(17)1 b4,2b3,2b2,3 1 b4,1a3,3 1 b4,2b4,3 1 b4,3) exp[g4,2xi11]

1 (K cos(x))2f 1 cos2(x) cos(K sin(x)) 5 0,
1 fp

i,4(xi11);

N1 5 (a3,1a2,1 1 a3,2b2,1) exp[g3,1xi11/2] with R(x) 5 2tan(x), P(x) 5 2(K cos(x))2, and Q(x) 5
cos2(x) cos(K sin(x)) in Eq. (1). We solve Eq. (17) with

1 b3,1a2,1 1 b3,2b2,1) exp[g3,2xi11/2], the uniform mesh Dx 5 f/40, in which the total mesh
number n and the total computational length XT are 20N2 5 (a3,1a2,2 1 a3,2b2,2) exp[g3,1xi11/2]
and f/2, respectively. K is a nonzero parameter. In this

1 b3,1a2,2 1 b3,2b2,2) exp[g3,2xi11/2], experiment, the transporting velocity is everywhere nega-
tive and its absolute values go up to infinity near the rightN3 5 (a3,1a2,3 1 a3,2b2,3) exp[g3,1xi11/2]
side boundary x 5 f/2. The boundary values at x 5 0 and

1 b3,1a2,3 1 b3,2b2,3) exp[g3,2xi11/2] 1 fp
i,3(xi11/2). x 5 f/2 are set to f(0) 5 f1 5 1.0 and f(f/2) 5 fn 5
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FIG. 2. Comparison of numerical solutions with the analytical solu- FIG. 3. Comparison of numerical solutions with the analytical solu-
tion for K 5 5. tion for K 5 10.

sin(K)/2K, respectively. The analytical solution is given by
using an intermediate variable as QUICK schemes with the analytical solution for K 5 5,

K 5 10, and K 5 15, respectively. All the numerical solu-
f(x) 5 cos(K sin(x)) 2 cot(K) sin(K sin(x))

(18) tions for small values of K less than about 5 are in good
1 sin(x) sin(K sin(x))/2K. agreement with the analytical solution. The spatial depen-

dence of the absorption term P(x) and source term Q(x)
This experiment is preferable to validate the present in this test equation increases with the increase of K. In
scheme since the coefficients of this test equation are Fig. 7 for K 5 15, the solution with the present SDCLENS
strongly dependent on the space coordinate when K is scheme is distinctly better than solutions with the locally
large. exact schemes LECUSSO based on a one-region model

and Taylor expansion scheme QUICK.3.1.2. Numerical Solutions

Discretizing the convection term and the diffusion term 3.2. Two-Dimensional Problem
in Eq. (17) with Eqs. (2), (3.b), and (3.d), and the second-

We solve the recirculating stationary flow driven by com-order central scheme, respectively, we obtain the differ-
bined shear and body forces in a two-dimensional squareence equation

(fi11 2 2fi 1 fi21)

2 Rmih[Ai11/2fi 1 Bi11/2fi11 1 Ci11/2fi12]
(19)

2 [Ai21/2fi21 1 Bi21/2fi 1 Ci21/2fi11]j

2 P(xi) Dx2
i fi 1 Q(xi) Dx2

i 5 0 for i 5 2, 3, ..., n 2 2,

with Rmi 5 (Ri21/2 1 Ri11/2) Dxi/2. Since R(x) 5 2tan(x)
is negative everywhere in the computational region,
fi11/2 and fi21/2 are evaluated by Eq. (3.b) and Eq. (3.d),
respectively. At i 5 n 2 1, we use the analytical solution.
We obtain the numerical solution fi (i 5 2–n 2 2) by
solving the matrix equation G ? [f] 5 H, where G and H
are (n 2 3) 3 (n 2 3) and (n 2 3) 3 1 matrices produced
by Eq. (19), respectively.

3.1.3. Comparison of Numerical and Analytical Solutions

Figures 2, 3, and 4 show the comparison of numerical FIG. 4. Comparison of numerical solutions with the analytical solu-
tion for K 5 15.solutions by the present SDCLENS, LECUSSO, and
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3.2.2. Numerical Method

The above governing equations are solved with the uni-
form mesh grids 20 3 20. The convection terms in those
equations are discretized by Eq. (3) and the diffusion terms
are discretized with the second-order central scheme. The
discretized equation for Eq. (20) is solved as an initial
value problem by using a time marching method, and Eq.
(21) is solved by the SOR method.

The difference coefficients (Ai61/2 , Bi61/2 , Ci61/2) in Eqs.
(3.a)–(3.d) are determined independently in each x- and
y-direction on the basis of the four-region model in Section
2. Further, we have tried to include coupling effects be-
tween x- and y-directions, but regrettably we could not

FIG. 5. Two-dimensional driven cavity. obtain converged solutions. The method to determine
those coefficients with the coupling effect is explained be-
low. After the coefficients are determined, those coeffi-
cients are employed to solve the discretized equations for

cavity shown in Fig. 5, which was constructed by Shih et the governing equations. Namely, the method explained
al. [22]. The exact solution of this flow problem is known. below is not to solve the governing equations but merely

an approximate method to determine the difference coef-
3.2.1. Computational Conditions ficients with coupling effects between the two dimensions.

By analogy with the factorisation method, we separateThe governing equations in terms of vorticity g and
Eq. (30) into two parts asstream function c for the above cavity flow are

n
g
x2 2 u

g
x

2 ag 5 0, (28)u
g
x

1 v
g
y

5 n Fg
x2 1

g
y2G2

B
x

, (20)

n
g
y2 2 v

g
y

1 ag 2 g 5 0, (29)c

x2 1
c

y2 5 2g, (21)

with g 5 B/x. a is a kind of separation parameter andu 5
c

y
, v 5 2

c

x
, (22)

is to be determined by the iterative calculation as explained
later. Since the source term g(x, y) in Eq. (29) depends

g 5
v
x

2
u
y

. (23) on x and y, the rigorous factorisation technique is not
applicable to get solutions. But we apply this technique
only to get the difference coefficients (Ai61/2 , Bi61/2 ,

The body force B is present in the y-direction. The expres- Ci61/2). Any solution of Eqs. (28) and (29) satisfies Eq. (20).
sion for B is lengthy and is given in Ref. [22]. The difference coefficients in both x- and y-directions

The boundary conditions for the velocities u and v are are evaluated using Eqs. (28) and (29) on the basis of the
of Dirichlet type, zero everywhere, except along the top four-region model. Then a is approximately estimated by
surface (y 5 1), where v(x, y) 5 0 and using older values of the velocities, the vorticity, and the

difference coefficients in the iterative calculations:
u(x, 1) 5 16x2(x 2 1)2. (24)

ax 5 [2ui, j Dxh[Ax
i11/2, jgi, j 1 Bx

i11/2, jgi11, j 1 Cx
i11/2, jgi12, j]

The boundary condition for g on the wall is evaluated with
2 [Ax

i21/2, jgi21, j 1 Bx
i21/2, jgi, j 1 Cx

i21/2, jgi11, j]jthe second-order accuracy.
The analytical solutions for the stream function and ve-

1 n(gi11, j 2 2gi, j 1 gi21, j)]/(gi, j Dx2), (30.a)locities are

a y 5 [vi, j Dyh[Ay
i, j11/2gi, j 1 By

i, j11/2gi, j11 1 C y
i, j11/2gi, j12]

f(x, y) 5 8x2(x 2 1)2y2(y2 2 1), (25)
2 [Ay

i, j21/2gi, j21 1 B y
i, j21/2gi, j 1 C y

i, j21/2gi, j11]ju(x, y) 5 16x2(x 2 1)2y2(2y2 2 1), (26)

2 n(gi, j11 2 2gi, j 1 gi, j21) 1 gi, j Dy2]/(gi, j Dy2), (30.b)v(x, y) 5 216x(x 2 1)(2x 2 1)y2(y2 2 1). (27)
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FIG. 6. Comparison of numerical solutions with the analytical solution for the stream function f(0.5, y) along the y-directional line of symmetry
at Re 5 1.

ai, j 5 (ax 1 a y)/2. (31) ther investigation on the coupling effects between the two
dimensions are necessary for multidimensional equations.

Since we could not obtain converged solutions by using
3.2.3. Comparison of Numerical and Analytical Solutions

the above procedure, we evaluated independently the dif-
ference coefficients (Ax

i61/2, j , Bx
i61/2, j , C x

i61/2, j , Ay
i, j61/2 , Figures 6 and 7 show the comparison of numerical solu-

tions by the present SDCLENS and QUICK schemes withBy
i, j61/2 , C y

i, j61/2) in both x- and y-directions based on the
four-region model from Eqs. (28) and (29) with a 5 0, the exact solution for the stream function f(0.5, y) and

x-component of velocities u(0.5, y) along the y-directionalrespectively. Then we solve the governing equations. Fur-

FIG. 7. Comparison of numerical solutions with the analytical solution for the x-component of velocities u(0.5, y) along the y-directional line
of symmetry at Re 5 1.
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FIG. 8. Comparison of numerical solutions with the analytical solution for the stream function f(0.5, y) along the y-directional line of symmetry
at Re 5 100.

line of symmetry at Re 5 1/n 5 1. Figures 8 and 9 show to the first experiment. This may be due to the fact that
the velocity u(0.5, y) at x 5 0.5 does not so strongly varythe same comparison at Re 5 100.

Both the numerical solutions with the SDCLENS and along the y-direction, as compared with the coefficients in
Eq. (17).QUICK schemes at Re 5 1 are in good agreement with

the exact solution. At Re 5 100, the SDCLENS scheme Finally, we compare the computational efficiency of the
present scheme with the linear scheme QUICK. The cpushows globally the solutions a little better, as compared

with the QUICK scheme, but there exist no significant time consumed to get stationary solutions by the
SDCLENS scheme on the computer VT-Alpha433AXPdifferences between these two solutions, on the contrary,

FIG. 9. Comparison of numerical solutions with the analytical solution for the x-component of velocities u(0.5, y) along the y-directional line
of symmetry at Re 5 100.
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was 121 s, which was about 50 times that using the QUICK A, B, C, D, etc. in Eq. (3)), a general N-region model is
preferable, in which we need one or two more independentscheme. The number of steps required for the time-

marching iterative calculations were same for both calcula- relations among the difference coefficients such as relations
to guarantee the first-order accuracy and the second-or-tions with the SDCLENS and the QUICK schemes. The

cpu time for the SDCLENS was dominated by the solution der accuracy.
Equation (11) can be expressed by the matrix in theof Eq. (15). In case we use the first-order upwind scheme

in the beginning, hundreds of steps for the time-marching homogeneous form
iterative calculations, the cpu time could be decreased to
almost one-half without making changes on the converged
solutions. Hence in the practical application of the present |Ek,1

Ek,2

1
| 5 Tk ? |Ek21,1

Ek21,2

1
| for k 5 2, 3, 4, (A.1)scheme to stationary equations, there may exist an efficient

iterative method by appropriately combining the
SDCLENS and the first-order upwind schemes. The cpu
time depends on a programming technique, especially in

wherethis complicated algorithm as compared with the linear
QUICK scheme with constant difference coefficients. The
present SDCLENS program has not been always opti-
mized.

Tk ; |ak,1 ak,2 ak,3

bk,1 bk,2 bk,3

0 0 1
|. (A.2)

4. CONCLUSIONS

A new numerical scheme SDCLENS (spatially distrib-
By using Eq. (A.1), we obtainuted coefficients locally exact numerical scheme) for the

convection term in transport equations was presented in
which the difference coefficients are determined such that
the resulting equation interpolating numerical fluxes satis- |Ek,1

Ek,2

1
| 5 p

k

m52

Tm ? |E1,1

E1,2

1
| for k 5 2, 3, 4. (A.3)

fies any locally exact solution of the transport equations
with absorption and source terms. The spatial distribution
of the coefficients of the transport equations was taken
into consideration based on a four-region model among Equation (14) can be expressed by the matrix form
three adjacent control volumes, in which continuous condi-
tions of solutions are imposed on each boundary between

Ai11/2(exp[g1,1xi21] exp[g1,2xi21] fp
1(xi21))(E1,1 E1,2 1)t

two adjacent regions. Thus the SDCLENS scheme is con-
structed on the basis of the locally exact solutions, consis- 1 Bi11/2(exp[g2,1xi] exp[g2,2xi] fp

2(xi))(E2,1 E2,2 1)t

tent with the spatially piecewise coefficients of the trans-
1 Ci11/2(exp[g4,1xi11] exp[g4,2xi11] fp

4(xi11))(E4,1 E4,2 1)t
port equations in the frame of a four-region model.

The SDCLENS scheme was examined through numeri- 5 (exp[g3,1xi11/2] exp[g3,2xi11/2] fp
3(xi11/2))(E3,1 E3,2 1)t,

cal experiments using the one-dimensional transport equa- (A.4)
tion with spatially distributed coefficients and the two-
dimensional cavity flow problem. The present SDCLENS

where the superscript t denotes transposed matrix. Ex-scheme showed good solutions, as compared with the con-
pressing (Ek,1 Ek,2 1)t for k 5 2, 3, 4 with (E1,1 E1,2 1)t byventional locally exact scheme LECUSSO and Taylor
using Eq. (A.3) and substituting those into (A.4) yieldsexpansion scheme QUICK schemes. The cpu time con-

sumed by the SDCLENS scheme was about 50 times of
Ai11/2(exp[g1,1xi21] exp[g1,2xi21] f p

1(xi21))(E1,1 E1,2 1)tthat by the QUICK scheme. Further investigations on the
coupling effects between the two dimensions are necessary

1 Bi11/2(exp[g2,1xi] exp[g2,2xi] f p
2(xi))T2(E1,1 E1,2 1)t

for two-dimensional equations.
1 Ci11/2(exp[g4,1xi11] exp[g4,2xi11] f p

4(xi11))T4(E1,1 E1,2 1)t

APPENDIX
5 (exp[g3,1xi11/2] exp[g3,2xi11/2] f p

3(xi11/2))T3(E1,1 E1,2 1)t,
(A.5)This appendix outlines the derivation of Eq. (15), which

is able to be easily extended to a general N-region model.
When we improve the interpolation formula Eq. (3) with By imposing that Eq. (A.5) hold identically for any value

of E1,1 and E1,2 , we obtainfour or five base points (four or five difference coefficients
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